
Assessment: Natural Language Processing with Python
Instructions

To earn a micro-badge for this workshop, write code for/answer the prompts on the next page. You should
do your work in a code environment (like Jupyter); include all code, code outputs, and short answers directly
in your notebook. Submit this notebook to GradPathways by exporting it to an html file (in Jupyter
Notebooks, you can do this by going to File > Save Page As in your browser).

Links

• GradPathways Badge
• Event page
• Workshop reader

Environment and File Setup
For this assessment, you will extract linguistic information about a corpus of texts and use this to model the
texts. We intend this both to reinforce the materials covered in the workshop sessions and to serve as an
occasion with which you can practice NLP methods for your own research. To wit: you are invited to use
your own corpus of text files to complete the assessment; by the time you’ve finished, you’ll have built a
foundation for a research project with NLP.

If you don’t want to use your own corpus, or if you don’t have one ready to hand, we’ve also provided you
one. Under data/sherlock you’ll find 56 Sherlock Holmes short stories. You can find a corresponding file
manifest at data/manifest.csv, which you should use as a reference when doing your work. If you choose
to use your own corpus, we suggest using somewhere between 50-100 documents. But note: 100 novels is far
more material than 100 short stories. Try to aim for a corpus that has at least 150,000 total words.

This assessment does not require you to generate and store new files, but you are welcome to do so as you see
fit.

While we ask that you do this work in a code notebook, you may use a local environment on your own
computer or Google Colab. Regardless of which environment you use, you will need to make sure that you
have all required packages installed. The requirements file for these packages is under
data/requirements.txt.

The directory structure for this assessment is:

requirements.txt A list of required packages
text_mining_assessment.pdf These instructions
data/ The data directory
|-- manifest.csv A file manifest
`-- sherlock/ Plaintext files of 56 Sherlock Holmes stories

Rubric
Readers at GradPathways will be looking for a few things in this assessment:

1. Working code: were you able to successfully implement code for each prompt?
2. Understanding the code: can you explain what your code does and why you implemented it?
3. Supported examples and materials: have you used graphs and other results to produce evidence for

your findings?
4. Critical reflection: do your short answers provide context (conceptual, domain-specific, etc.) for your

findings and observations? Can you use your results to reason about your corpus, or even provide
preliminary hypotheses?

1

https://ucd.badgr.com/public/badges/mugtjcgjSCirltrfe_91NA
https://datalab.ucdavis.edu/eventscalendar/natural-language-processing-with-python-3-part-series-3/
https://ucdavisdatalab.github.io/workshop_nlp_with_python/


Prompts
1. Processing

a. Load the following data into your environment, assigning each to their respective variables:
• nlp: spaCy’s en_core_web_md model
• manifest: file manifest for the corpus files
• paths: a list of paths to all the corpus files; be sure to sort these!

b. Write a function to load corpus files from paths. This function should yield opened documents.
Use it in concert with the model’s .pipe() method to load and process the corpus. Assign the
output to a variable named corpus

c. As you wait for the documents to process, explain in a sentence or two why someone might want
to use a generator to handle text data

d. By default, spaCy assigns word embedding vectors to both individual tokens and to the document
as a whole. You can access these with the .vector attribute. Use a list comprehension to get the
document vectors from each file in the corpus and store the output in a vecs variable. Wrap
this list in a numpy array

2. Clustering documents with word embeddings

a. With the embedding vectors extracted, you can cluster and visualize the corpus. Use the
AgglomerativeClustering object from scikit-learn to do the clustering on the vectors. Then,
run a dimensionality reduction with TSNE (also in scikit-learn) to create two-dimensional (XY)
representations of the vectors. Use the following values for TSNE:

• init: pca
• learning_rate: auto
• angle: any float under 0.3
• Hint: if you’re unsure about the syntax here, refer to the final section in chapter three of the

workshop reader
b. Convert your XY data into a pandas dataframe called vis_data. Assign two new columns to this

dataframe: 1) title: title of each story (available in manifest); 2) label: output clusters from
AgglomerativeClustering (accessible via the .labels_ attribute). Use altair to make a
scatterplot of this data. The plot’s color argument should take in the label column (use
label:N to get the coloring right); tooltip should take in name. Don’t forget to set the plot to
its interactive mode!

c. AgglomerativeClustering defaults to two clusters. Based on a visual inspection of the plot
you’ve made, do you think this number of clusters is adequate for your corpus? Why not or why
not?

d. Re-cluster your data a few times with a different number of clusters. Find what you think is the
optimal number of clusters for the corpus. Explain your reasoning for doing so, using supporting
visualizations as you see fit

• Hint: If you’re having trouble dividing up your documents into groups in the visualization,
try adjusting the parameters of TSNE to better reflect what the AgglomerativeClustering
object analyzes. A good place to start is angle

• Note: Clustering almost always involves some element of interpretation, but, in your own
work, you can also use empirical measures to help you set an appropriate number of clusters.
Silhouette scoring is a common strategy for doing so

e. Once you’ve picked your optimal number of clusters, assign the cluster labels to a CLUSTER
column in manifest. Use a groupby to count the number of documents in each cluster

3. Unique words

a. It’s now to time to explore the actual words in your corpus. First, you’ll look at intersecting
words across the clusters you’ve created. To do so, create a list of sets, where each set corresponds
to the unique tokens in a corpus text. Be sure to use the .text attribute when compiling these
sets from spaCy documents. Assign this list to a new column in manifest called TYPES

b. In a for loop, step through each unique cluster in manifest. Use

2



.groupby('CLUSTER').get_group(<CLUSTER_NUM>)['TYPES'] to extract all the sets for a given
cluster. Perform a set intersection on the list, add the result to a dictionary called
doc_intersections (use the cluster number as a key), and print the following to screen:

• Cluster number
• Number of elements in a set
• Hint: not sure how to do a set intersection? Take a look at this link

c. Get the intersection of doc_intersections and store it in a variable named
corpus_intersections (the result should be relatively short). This is the overlap between all
unique words in all clusters

d. Return to your dictionary of sets and build one more for loop to step through each one. Within
the for loop, use <CURRENT_SET>.difference(corpus_intersections) to get the difference
between the current set of words and the intersection across the corpus. Print the result of
.difference() to screen along with the cluster number and inspect the contents. What do you
see? Can you discern any patterns among these words that might help you understand why
they’ve been grouped together?

4. Linguistic features

a. In 3a, you created sets from the corpus texts using spaCy’s .text attribute. But as you know
from our series, spaCy provides several other document and token annotations, ranging from
entities to part-of-speech tags and syntatic dependencies. Select three such attributes and for each
one, write a function that will gather information about this attribute from the corpus texts

• Hint: You’re probably going to be counting attributes. If so, it’s best to normalize those
counts, usually by dividing them against the document as a whole (refer to the advanced
feature engineering section of the second chapter in the corpus reader)

b. Before running these functions on the corpus text, explain your reasoning for selecting each
attribute in a sentence or two. Make a prediction: do you think your attribute will help you
discern differences between your clusters?

c. Run the functions and assign the result of each to columns in manifest. Then group manifest
by CLUSTER and make a histogram of each attribute you created. Based on what you see, do you
think these attributes successfully partition the corpus along the lines your clustering has defined?
Explain why or why not

• Hint: The syntax to create a histogram should look like the following:
manifest.groupby('CLUSTER')[<ATTRIBUTE_COLUMN>].hist();

3

https://www.programiz.com/python-programming/methods/set/intersection

	Assessment: Natural Language Processing with Python
	Environment and File Setup
	Rubric
	Prompts


